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1. Introduction. In 1943 R. Courant [1] suggested a variation of the Rayleigh- 
Ritz method for eigenvalue problems. In the classical Rayleigh-Ritz method one 
finds the stationary values of the Rayleigh quotient J(u) as u varies over a finite- 
dimensional subspace of the space of admissible functions. The subspace usually 
consists of analytic functions, for example, polynomials. Courant's idea, in essence, 
is to use nonanalytic functions. For example, if the problem is 

(1) y"+Xy=O, 

(2) y(O) = y(l) = 0, 

we divide the interval [0, 1] into n equal intervals of length h 1/n, the subintervals 
being [xi, xi+,], where xo = 0, xi = xi-, + h, for i = 1, 2, * * , n. Now, let S be the 
class of functions which are continuous on [0, 1], linear on each subinterval and 
satisfy (2). Then if 

J (u')2dX 
Al = min J(u) = min 1 S S f (u2) dX 

and if Xi is the lowest eigenvalue of (1) we have 

X1 ? A1. 

In general, if Xi are the eigenvalues of (1) arranged in increasing order and if Ai 
are the similarly arranged stationary values of J (u) as u varies over S, then 

Xi < Ai. 

The Ai are the eigenvalues of the finite-difference equation 

us+1-2us + us~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l ~~~~+ A 6 (ui+l + 4ui + uj_l) = O. X 1, 2, n1 

U0 = un = 0. 

We shall show for two boundary-value problems that a lower bound for Xi can 
be determined once Ai is known. This is done by finding positive numbers A and 
B such that 

(3) A i + 
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whence 
BA, - A X Xi. 

This method of obtaining a lower bound has been used very effectively with a 
different definition of Ai by H. F. Weinberger [4] and B. E. Hubbard [3]. 

In the last part of the paper we indicate how one might obtain higher-order 
bounds. 

2. The Sturm-Liouville Problem. The general Sturm-Liouville problem is 

(4) (vy')' + (Xp - q)y = 0, 

(5) alyI(O) - biy(O) = 0, 

(6) a2y'(L) + b2y(L) = 0, 

with v and p positive, q non-negative on [0, L], and v piecewise continuously dif- 
ferentiable, p and q piecewise continuous on [0, L]. Also, ai _> O bi _> . We may 
assume without loss of generality that v(x) = 1, L = 1. This problem has positive 
eigenvalues Xi < X2 < ... and corresponding eigenfunctions yi , Y2, ... , normalized 
so that fI PYi2 dx = 1, which are continuously differentiable and have a continuous 
second derivative at each point of continuity of p and q. 

It is well known that 

(7) f pyiYi x =ij 

For any function f let 

Yf) = A~l - AO). 

Let al, , as be real numbers such that j., ai = 1. Let y(x) = .=i alyi(x). 
Then it is known that 

(8) f (y')2 dx + f qy2 dx - (j'y) Xs 

(see [3, equation 2.12]). 
Note that -(y'y) is non-negative for ally y(x) which satisfies (5) and (6). 
Choose mesh points 0 = xo < x < ... < Xn = 1 such that any discontinuity of 

p or q coincides with some xj , and let Si be the space of functions which are con- 
tinuous on [0, 1], linear in each [xi, xi+,], and satisfy (5) and (6). For any con- 
tinuous and piecewise continuously differentiable function w(x) which satisfies 
the boundary conditions, let 

N(w) = (wI) 2 x- (ww'). 

The Rayleigh quotient is 

2 N (w) + f wdx 
J (W) = fw 
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Let 0 < Al < A2 < * < An-l be the stationary values of J(w) as w varies over 
S1. Then from the Courant maximum-minimum principle we have 

(9) Xi _~Ai, i = 1,2,2 . *, n -1. 

On the other hand, if wl, .**, w8 are any linearly independent functions in 
Si, and if Zpe ai = 1 and w(x) = ELi aviw(x), then 

(10) A8 _ max J(w). 
as, ,a, 

Weinberger calls this the Poincar6 inequality, and it follows immediately from the 
minimum-maximum character of the Ai. 

Now, let Yi(x) be that function in Si which agrees with the eigenfunction yi(x) 
at each interior xj, i.e, 

Yi(xj) = yi(xj), j = 1, 2, ** , n - 1, i = 1, 2, *, n -1, 

and let 

Y(x) = Zai~i(x). 
i-I 

We shall show later that if the intervals are sufficiently small the Y, are linearly 
independent. Then from (10) we have 

(11 ) A8 _ max J(Y). 
ait,-. a* 

Let 

r(x) = y(x) - Y(x). 

Then 

(12) r(xj) = 02 j = 12 2, .. * , n- 12 

and r satisfies (5) and (6). In addition, r(x) is twice continuously differentiable in 
each (xj, xj+i), and r" (x) =y y(x). Let Gi(x, t) be the Green's function for the 
differential operator d2/dx2 on the interval [xi, xi+,], with boundary conditions (12) 
or (5) or (6), whichever applies. Then 

(13) r(x) =f Gj(x, t)y"(t) di xj ? x < x,+ 

Let us first consider the denominator of J( Y). We have 

(14) y2 > y2 _ 21yI Irl, 

and 

fti+lpy td dx?t- 
xi 11Y dx > - 2 pIyIJr Idy 

Therefore, 
115) A py dxz1-2 p l plyn-i do, 

(15) f pY2dX ? 1 -2VpmI -Vp I yIr Idx, 
j=O j~ 
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where, for any f(x), 

fM maxf(x), 
[0,1] 

fm = minf(x). 
[0,1] 

By Schwartz' inequality, 

/ f+\2 XTj+1 rX+ 

/p y IY Ir dx) < P i dx] r2 dx. 

But, from (13), 

(16) r2(x) < f Gj2(x t) di f (y")2 d. 
l1j 

rd 

Put 
exi+lerti+1 

G max ]] G12(x t) dx di. 

Then 

(17) i\ /piyI r dx ? \ [ G f (y )2 dxl, 

and 

(18) ,tL \/pIyI r dx ? [j\ (yG) dx]. 
j20 ij . 

From the differential equation, 
s 

= Z ai(q - Xip)yi 

Then for any y > 0, 

(Y )2dx < (1 + Y) _+ (1 + 2A 

Let 

K8 = g~ljb. [(1+ y) qm + + 1) P 2A] 

1 

so that if qM = 0, K8 = AsX/pM, otherwise -y Av'(pMpm)/qM. In any event, 
from (15), (18) we have 

(19) 4 pY2dX > 1 - 2VPMK8\/G. 

The important thing to note at this point is that K8 and G depend only on the 
data. For example, if q(x) = 0, a, = a2 = 0, then 

(20) Y2d 1 / max lxj -xI 
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The linear independence of the Yj is implied by (19), for max (xi - x;) 
sufficiently small. 

By entirely similar methods we find 

(21) qY dx ? qy2 dx + 2 eq K IG + qMGK8'. 

We now show that 

N(y) = N(Y) + N(r). 

From the identity 

J+ y, d _ 
= 

j~j (Y" + r")(Y + r) dx 
xi yi 

follows the identity 

y'jy + f (y')2 dx =-y'Y jj+1 + rY' J'+1 - r'r jj+1 

+ I (Y dx + I (r) d 
xj i 

Noting that y, y' and Y are continuous and r(xj) = 0 we obtain, by summing the 
above, 

N(y) = -(y'Y) + (rY') + f (y')2dX + N(r) 
1 

--('Y) + (yY') - (YY') + f (Y')2dx + N(r) 

- N(Y) + N(r). 

But N(r) _ 0, so from (11), (8), (21) and (19), we obtain 

Xs + 2qmK. \G +qm K82G 

(22) A8 <? PM 

1 - 2V\pm KBV\G 
which is the desired result. 

It should be noted that there would have been no terms other than X, in the 
numerator of (22) if we could have composed S1 of solutions of Y" = qY rather 
than of Y" = 0. 

3. A Fourth-Order Problem. Certain fourth-order problems can be handled by 
the methods of Section 2. For example, consider the boundary-value problem 

(23) (vy")" = XPY, 

(24) y(O) = y(l) = y'(O) = y'(M) = 0, 

which describes the fundamental modes of vibration of a clamped beam. The 
Rayleigh quotient is 

J (vw")2 dx 
J(W) = w d 

W p2 dx 
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We define Ai to be the stationary values of J(w) as w varies over a class of functions 
which we call T3, which is composed of all functions which are continuously dif- 
ferentiable on [0, 1], satisfy (24), and which in each interval (xj+l, xj) satisfy 
(vw")" = 0. Any discontinuities of v and p must coincide with some xi. The ele- 
ments of T3 have the following form: w(x) E T3 if and only if there exist real num- 
bers w5, wj = 1, 2, * , n - 1, and constants aj, bj, cj, dj such that 

W W = 
vs + bj X- + cj(x x)) + dj 

for x, < ?x xj+l, and w(xi) = wj, w'(x3) = wj'. J is stationary at some w(x) if 

(25) d =O a =0, j=1,2, **, n-1. 

As before we have Xi < Ai. To obtain an upper bound for Ai we let yi be the 
normalized eigenfunctions of (23) and (24) and let Yj be the element in T3 such 
that 

Yi(xj) = yi(xj), Yi'(Xj) =yxi), 

j = 0,1, ,n. Then for Y Z.ijaiYi, Z8=ai2= 1, 

A, ? max J(Y). 
al, . P at 

If we replace Gi(x, I) in (13) by the Green's function for the operator 

d2 d2 

dx2 dx2 ' 

with boundary conditions r(xj) = r'(xj)-=0 j = 0,1, , n, then 

f py2 dx > 1 - 2pM A. G 

It is easily verified that 

fV(Y )2 dx < v(y")2dx < X., 

so 

- 1 -2PM A8 V\G 

An interesting special case occurs when v(x) is a step function. Then the ele- 
ments of T3 are cubic polynomials in each [xj1+, xj], and 

1 - PM 4.05 X 10 3 max [xi, - xj4 
VmV 

The matrix eigenvalue problem defining the Xi can be found in [5], where it is 
assumed that both v and p are step functions and that the beam is simply supported. 
The matrices for the clamped beam are found by discarding the first and last 
intervals. 
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4. Higher-Order Bounds. To attempt to obtain higher-order bounds for the 
Sturm-Liouville problem, rather than use higher-order Lagrange interpolation, as 
is done in [2], we replace Si by the space S2k+i, k = 1, 2, * * *, consisting of all 
functions satisfying (5) and (6) which are k times continuously differentiable 
on [0, 1] and which are polynomials of degree 2k + 1 in each [xi+,, xi]. If the eigen- 
functions are sufficiently smooth, there will be functions Yi G S2+, such that 

Yi (xi) = yi (xj), a = 0, 1, *. , A. 

With y = Y + r we have 

?_(X)(2k+2) = Y(X)(2k+2) 

with appropriate boundary conditions, so that there are Green's functions Gj(x, t) 
such that 

r(x) = J j x G( t)y(t)(2k+2) d~. 

We proceed as before; however, estimating f [y(2k+2)]2 dx will be quite difficult for 
k > 0 unless p(x) and q(x) are step functions, in which case we would have yj(2k+) = 
(q - X@)k+iyi, from which estimates can be made. 

For the numerator of the Rayleigh quotient we no longer have AN(Y) < N(y), 
but 

N( Y) ? N(y) + 2 I Y'r j dx 

< N(y) + 2 I yr dx + 2 f 
i 

Ir" dx 

which can be estimated if r can. 
For the fourth-order problem we could use spaces T2k+1 consisting of functions 

satisfying the boundary conditions such that, in each subinterval, 

2k-3 

(VW)= L: aix, 
i=tO 

where the 2k - 2 constants a0, . , a2ku and the four constants of integration are 
determined by the condition that w(c) be continuous for a = 0, 1, k. We have not 
obtained any bounds using T2k+1. 
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